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New classes of exact solutions of Euler's equations are found, which describe steady axially symmetric flow with a vortex. Examples 
of solutions corresponding to fluid flows with a free boundary are given. Copyright © 1996 Elsevier Science Ltd. 

1. We consider the following equation for the stream function ¥(z, r) describing steady axially symmetric 
(with vortex) flowt+ of an ideal incompressible fluid [1], which is also known as the Grad-Shafranov 
equation in plasma physics 

Vzz + Itlrr -- r - I V r  = r2 F -  H (1.1) 

where F and H are arbitrary functions of ¥. We will seek solutions V of (1.1) such that for any smooth 
function ~ the composition Z = ~.  ¥ is also a solution of some equation 

~zz + ~rr -- r - l ~ r  = r2FI (Z) - HI (Z) (1.2) 

Solutions having this property will be called ftmctionally-invadant. Functionally-invariant solutions 
of the wave equation were constructed in [2] and their group-theoretic interpretation was given in [3]. 

Henceforth we shall assume that Yz ~ 0 and Yr ~ 0. Substituting ~ * ¥ in place of Z in (1.2), we obtain 

~,(~ql)(~llz z + ~qlr r _ r-l~l/r)  + ~,,(~i/)(~l/~ + ~/2) = r2Fi ( ~ ( ~ / ) ) _  HI (~(~1/)) (1.3) 

If ~b" ~e 0, then from (1.1) and (1.3) we obtain the equation 

2 2 
~[/Z '+~/r  = E2C2 + CI (1.4) 

Ct (V) = - (n t  (~(W))- @'(v)H(V)) / @"(W) 

C2(¥) = (6 ( ¢ ( ¥ ) ) -  ¢'(~)F(v)) / ¢"(V) 

Multiplying (1.1) by Yz and subtracting from it Eq. (1.4) differentiated with respect toz and multiplied 
by two, we arrive at the equation 

rql z (~ll r / r )  r - tall r(~l r / r)  z = (A2(~l/)r 2 + A3(~/))~/z 

A 2 ( ~ I ) =  F - C  ~ / 2 ,  A 3 ( ~ ) = - ( H + C (  / 2  ) 

(1.5) 

Integrating the latter, we get 

Wr = AI 0l/) r + A2 (~1/) r3 / 2 + A3 (~l/)r in r (1.6) 

The compatibility of (1.4) and (1.6) can be investigated by standard methods. Expressing Yz in (1.4) 
in terms of V and r using (1.6), after cross-differentiation we obtain 

K I r In 2 r + K2 r3 in r + K3r In r + K4 r5 + Ksr 3 + K6r = 0 

K I = -2A~, K 2 = -SA3A 2 + C~A 3 - 2C~A~ 
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K 3 = ..-4AIA 3 + C:A 3 - 2CiA~, K 4 = - 6 A  2 + C~A 2 - 2C2A~ - (1.7) 

K s = -8AIA 2 - 2A2A 3 + C(A 2 + C~A I - 2CIA ~ - 2C2A ~ 

K 6 = 2C 2 - 2AIA 3 , 2A~ + C{A I - 2CjA~ 

Since ~/z ;~ 0, Eq. (1.7) implies the six equations K / =  0. By the first equation, H + C'1/2 = 0. Then the 
second and third equations become identities, and the fourth to sixth equations take the form 

--6A 2 + C6A 2 - 2 C 2 A  ~ = 0 (1.8) 

- 8 A j A  2 + C{A 2 + C6A I - 2CIA~ - - 2C2A ~ = 0 

2C 2 - 2 A  2+C(A I - 2 C I A  ~ = 0  

Using the above, we can write (1.6) as follows: 

~r  ~-" At (W)r+ A2(W)r 3 

and the functions F and H can be expressed by 

F = C~ I 2 + 2A 2, H = - C ( 1 2  

(1.9) 

(1.10) 

It is obvious that every solution of Eqs (1.4) and (1.9) is functionally-invariant. It can be shown that 
Eq. (1.1), taking (1.10) into account, is satisfied identically by (1.4) and (1.9). Therefore we have proved 
the following result. 

Theorem. T h e  function ¥(z, r) is a functionally-invariant solution of Eq. (1.1) if and only if it satisfies 
Eqs (1.4) and (1.9), whereAi, Ci (i = 1, 2) are solutions of  (1.8). 

2. Among the functionally-invariant solutions one can distinguish those corresponding to fluid flow 
with free boundary. If the pressure is assumed to depend only on the stream functionsp = p ( v )  it can 
be shown that for any constant ¥0 the conditions for the existence of free boundary [4] will be satisfied 
for the surface ¥ = ~0. Using Bernoulli's equation 

p+ lu l  2/2 = R(W) 

for an incompressible fluid in the axially symmetric case, we arrive at the conclusion that the square of 
the velocity depends on the stream function I u 12 = T(~), which is in turn equivalent to Eq. (1.4) for 
Cx ~ 0. It follows that for any functionally-invariant solution ~ of Eq. (1.1) the surface ~(z, r) = ~0 = 
const can serve as a free boundary subject to the condition C1(~/0) ~< 0. 

3. The problem arises of finding the solutions of system (1.8). First we will consider the case A 2 = 
0. Then, the first equation in (1.8) is an identity. Without loss of generality we can set A1 = 1. The 
solutions of Eq. (1.1) corresponding to other values of A1 can be obtained as a result of the superposition 
of a function 0 and the solution obtained for A1 = 1. The second and third equations (1.8) can be 
simplified considerably. 

C~=O, 2C2 -2+C{ =0 

Their solution is C2 = k, C1 = l + (2 - 2k)¥, where k, l, E R. Substituting the values just found into 
the right-hand sides of (1.4) and (1.9) and solving the resulting overdetermined system, we obtain 

q = { r 2  / 2 + ~ / l z + 3 [  , 

r 2 1 2 + ( l - k ) ( z + ~ / ) / 2 + l l ( 2 - 2 k ) ,  

k = l , l > ~ O  
(3.1) 

k ~ l  

where ~,is an arbitrary constant. In the case when k > 1 and ~0 ~> l /(2k - 2) the surface ¥ = ¥0 (which 
is a one-sheeted hyperboloid if the second inequality is strict, and a circular cone otherwise) can be 
regarded as a free boundary. As has been mentioned above, ¢ .  W, where W is given by (3.1), is a solution 
of Eq. (1.1). Moreover 
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F = _ k z , , / x  ,3, H = l x " l x , 3 + ( l - k ) x " x / x ' 3 + ( k - I ) / x "  

Here  ~p is an arbitrary function and x is its inverse. 
We will now consider the case when A 2 * 0. We make the substitution 

AI = BA2, C, =( K + B)EA~. C, = EA~ 

where K(~), E(~),  B(~) are new unknown functions. Then system (1.8) will be equivalent to the following 

A2E'=6, A2EK'= E /  K - 4 B - 6 K ,  A 2KB'=I (3.2) 

Without loss of generality, we can setA2 = ~ in (3.2). Then the resulting system admits of the expansion 
operator  X = 2E0~ + Kdr  + BOa - ~0~,, the solution invariant under this operator being given by 

E = - 3 ¥  -2 , B = + 3 ~  -t, K = ~ - 1 / 3  

It can be verified that there are no real solutions when B = 3~ -1 and K = -~-1/3, so that in this case 
(1.4) implies that ~t2z + ~2 r < 0. When B = - 3 ~  -1, K = -~-1/3, from (1.4) and (1.9) we obtain the 
following system from which to find 

~ + ~ 2 = _ 3 ~ 4 r 2 + 8 ~ 3 ,  ~ r = ¥  ~ r 3 - 3 ~  2r 

This system admits of the operator  Y = z0z + r0~ - 2~0 v. The solutions invariant under Y are given by 

The choice of siga obviously does not matter. Other  solutions of the system are either trivial (i.e. 
independent of z) or can be obtained from (3.3) by a translation along the z axis. 

The function ~ ,. ¥ is a solution of Eq. (1.1) when 

F = -4"c 3 / "[" + 3x4x '' I x '3, H = 12x 2 / x' - 8x3x '" / x '3 

Here,  as before, ~(¥) is the inverse function to ~. 
It should be noted that solutions of the form ~ .  ~ for ¢ = 2In ¥ + ~ and ¢ = e¥  2/("-1), where e, ~ e 

R, are invariant solutions with respect to the admissible operators z0z + r0r - 40~ and, respectively, ZOz 
+ r0r - 4(n - 1)-I~0v, which were found for the first time in [5]. 

4. Apart from those described above, we have not succeeded in finding other explicit representa- 
tions of functionally-invariant solutions of Eq. (1.1). Nevertheless, the level curves of ~/corresponding 
to functionally-inwariant solutions can be constructed numerically. In this way a picture of the behaviour 
of trajectories of the corresponding solutions can be built up. One does not have to solve (1.8) to 
construct a separate level curve; it suffices to use the equation 

dzl  dr= -~, .  I ~ :  

When constructing the level curves the initial points were varied along the line z = z0 = const. Along 
with solving Eq. (L9), it turned out to be necessary to solve system (1.8) simultaneously. 

Below we present some computational results. To fix our ideas we will put E = ¥ everywhere. Then 
the first equation in (3.2) implies that A2 = 6. In addition, the initial point for constructing the level 
curve was chosen 1:o be on the Oz axis. When constructing the level curves shown in Fig. 1, we selected 
the initial data to be r = 2, B = -1.98, E = 8.17, K = -1.99 x 10 -2. The values ~ = 8.17; 11.1; 17.0; 29.1 
of the stream function correspond to curves 1--4. For each of the level curves shown ~ = ~/0C1(~0) ~< 
0. It follows that wJ[th each of them one can associate a surface which is a free boundary. The streamlines 
are obviously open. We used the following initial data for the level curves in Fig. 2: r = 2.829, B = 
-5.84, E = 5.98, K = 4.10. For curves 1-5 ~ = 5.98; 34.6; 44.2; 53.7; 82.5, respectively. For each level 
curve W = ¥0 that does not intersect the axis of rotation the condition C1(¥0) ~< 0 is also satisfied. The 
resulting solution can be interpreted as the motion of a fluid with toroidal free boundary. 
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Fig. 1. 

p 

Fig. 2. 

5. Let us consider a more general form of Eqs (1.4) and (1.9) 

~, .  = A01/ , r ) ,  ~I2+V2r=C(v,F) (5 .1)  

The compatibility condition for these equations is given by 

C r -2AA  r + CwA - 2CA~ = 0 (5.2) 

Equation (1.1) will be satisfied by virtue of (5.1) if and only if 

C w / 2 + A  r - a / r =  Fr 2 - H  (5.3) 

Equations (5.1)-(5.3) can be regarded as a group stratification [6] of Eq. (1.1) relative to the one- 
parameter group generated by the operator Oz, Eqs (5.1) forming an automorphic system and Eqs (5.2) 
and (5.3) forming a resolving system. 

We shall seek a solution of system (5.2), (5.3) in the form 

A= ~ Ai(v)Si(r), C= ~ Ci(~g)Ti(r) 
i=] i=J 

where m and n are certain natural numbers. The case m = n = 2 corresponds to funetionally-invariant 
solutions. It can be shown that the case m = 1, n = 3 corresponds to solutions of the form ¥ = f(z)g(r) 
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when F = AW and H = B¥1n W [5]. I t  turns out that for m = 1 and n = 3 other solutions of  Eqs (5.2), 
(5.3) of  the given form exist. 

For examDle . let $1_ = r -1, T1 = r -1, T2 = 1, T3 = r 2. Substituting the above representations fo rA  and 
C into Eqs (5.2) and (5.3), we obtaha the equations 

(_2C I + 2A 2 + C~AI _ 2CjA~)r  -3 + ( C~A I _ 2C2A~)r -I + (2C 3 + C ~A I - 2C3A~)r = 0 

(C~ I 2 -  2 A I ) r  -2 + C~ / 2 +  C.~ 1 2 r  2 = Fr 2 - H 

Equating the coefficients of  like powers of r and solving the resulting system of ordinary differential 
equations, we find that 

C I = ( k ¥  2 - 1 )  2 / k ,  C 2 = ~ 2 ( k ~ l / 2 - 1 )  2 

C 3 =0{¥4(k~1/2 -1) ,  A I =~l/(k~ 2 - 1 )  

F=0tW3(3k~I/2-2), H = ~ ( k w 2 - 1 ) ( w - 3 k w 3 ) ;  ( X , ~ , k ~ R  

The function ~ is specified, apart from an arbitrary additive constant. Besides, no solution corres- 
ponding to a linear equation of the form (1.1) is given. The solution of Eq. (1.1) for the above A and 
C is given by 

¥ = (k(I + Mr 2 ))-~ 

where M is the Weierstrass function, satisfying the equation 

M. 2 = 4M 3 + 4~M 2 - 4etM / k 
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